Example: Another CMOS

Logic Gate Synthesis

Now let's design a gate that realizes this Boolean algebraic expression:

$$
y=(\bar{A}+\bar{B}) C
$$

Step 1: Design PDN

First, let's rewrite Boolean expression as $\bar{Y}=f(A, B, C)$:

$$
\begin{aligned}
& \mathrm{Y}=(\overline{\mathrm{A}+\bar{B}) C} \\
& \overline{\mathrm{Y}}=\overline{(\overline{\mathrm{A}}+\bar{B}) C} \\
& \overline{\mathrm{Y}}=(\overline{\overline{\mathrm{A}}+\bar{B}})+\bar{C} \\
& \overline{\mathrm{Y}}=A B+\bar{C}
\end{aligned}
$$

Q: Yikes! We cannot write this expression explicitly in terms of uncomplemented inputs A, B, and C ! The input C appears as \bar{C} in the expression. What do we do now?

A: An easy problem to solve! We can essentially make a substitution of variables:

$$
C^{\prime}=\bar{C}
$$

And thus:

$$
\overline{\mathrm{y}}=A B+C^{\prime}
$$

Therefore, the inputs to this logic gate should be A, B, and C^{\prime} (i.e, A, B, and the complement of C).

Note that this Boolean expression "says" that:
"The ouput is low if either, A AND B are both high, $O R C$ ' is high"

Of course another way of "saying" this is:
"The output is low if either A AND B are both high, OR C is low"

The PDN is therefore:

Step 2: Design the PUN

Note we have as similar problem as before-the expression for Y cannot explicitly be written in terms of complemented inputs \bar{A}, \bar{B}, and \bar{C} :

$$
y=(\bar{A}+\bar{B}) C
$$

Note we can again solve this problem by using the same substitution of variable C :

$$
\begin{aligned}
& C^{\prime}=\bar{C} \\
& \overline{C^{\prime}}=C
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
Y & =(\bar{A}+\bar{B}) \overline{C^{\prime}} \\
& =(\bar{A}+\bar{B}) C
\end{aligned}
$$

This expression "says" that:
"The output will be high if, either A OR B are low, AND C' is low"

Which is equivalent to saying:
"The output will be high if, either A OR B are low, AND C is high"

The CMOS digital logic device is therefore:

